※ 特别推荐 ※
   2015年2月19日中国农历...
   昕龙春XLC最新绿色链接推荐
   同心圆梦·美丽中国行全国民族...
   荒漠化治理技术研讨会在京召开...
   让社会责任体现于地球村公民的...
   厂商曝铜制水龙头使用废品回炉...
   10年努力实推昕龙N-LON...
   2013昕龙春助推昕龙品牌坚...
   季元振老师著作《建筑是什么?...
   叶甘霖:"站立小便导流器"让...
   洋快餐大举进军中国的真相 素...
   热线电话0106013432...

※ 友情连接 ※
更多友情连接>>


矿物超细粉的应用研究现状与前景(附:菱镁水泥制品的工艺问题)


   (昕龙春提醒注意放射性危害 请点看昕龙模板自脱模体系绿色施工技术 adlist.asp?newsid=2   昕龙春XLC金点子咨询工作室简介 )

 昕龙春XLC绿色消费可持续发展的环保观点  

 

 

 

 

   可点开上图浏览金属板等--  中国诞生昕龙牌金属“”()板涂料(录像)-节能减排绿色专利精品-昕龙春 昕龙春XC参预务实性新农村绿色环保生态建筑建设-- adlist.asp?newsid=2

     链接  中建一局安装公司专业(开创储罐倒装法先河的)承包队伍

            大型储罐倒装法施工位移专利精品--昕龙自控双向助动式液压系统

            昕龙春XLC最新绿色链接推荐

矿物超细粉的应用研究现状与前景


    摘 要:综合分析和评述了粉煤灰、矿渣、硅灰对混凝土的工作性、耐久性和强度的影响及在高性能混凝土中的应用研究现状;重点分析了复掺粉煤灰和矿渣超细粉在配制高性能混凝土中的重要作用;对粉煤灰和矿渣超细粉在高性能混凝土中的应用提出了几点看法。
 
    水泥和混凝土是目前最主要的建筑材料。我国水泥产量1980 年为0. 8 亿t,2002 年已超过7 亿t,估计到2010 年水泥产量将达到12 亿t [1 ] 。生产水泥要耗费大量能源,且严重污染环境。如年产量5 亿t 水泥,煤耗约8 400 万t(标煤),约占全国总能耗的6 %,而生产1 t 水泥熟料产生1 t CO2,其总量占全国CO2 总排放量的10 % [2 ] 。因此,水泥工业的改造势在必行,而如何提高水泥利用率、开发水泥熟料替代产品以及尽量降低水泥熟料用量就成为一个重要研究课题,也是关系水泥和混凝土绿色化以及可持续发展的重要组成部分。目前,粉煤灰和水淬高炉矿渣等已成为水泥混凝土专家用来替代水泥的首选。

1 磨细粉煤灰

    我们通常所指的粉煤灰是指燃煤电厂中磨细煤粉在锅炉中燃烧后从烟道排出被收尘器收集的物质。粉煤灰属人工火山灰质材料,用来做混凝土的掺和料不仅可以节约水泥,更重要的是改善了混凝土的性能。粉煤灰在混凝土中有三种效应:形态效应、活性效应和微集料效应[3 ] 。

    粉煤灰的形态效应是指粉煤灰粉料由其颗粒的外观形貌、内部结构、表面性质和颗粒级配等物理性状所产生的效应。在粉煤灰中含有较多细小球形颗粒,掺入混凝土后能够起到类似滚珠轴承的作用,从而起到减水作用。

    粉煤灰的活性效应是指混凝土中粉煤灰的活性成分所产生的化学效应,即火山灰反应。粉煤灰掺入水泥,其活性SiO2和Al 2O3 能分别与水泥水化过程析出的Ca(OH) 2 发生反应,生成类似于水泥水化产物的低钙型水化硅酸钙凝胶体和水化铝酸钙,而表现出化学活性。

    粉煤灰的微集料反应是指粉煤灰中的微细颗粒均匀分布在水泥浆内,填充孔隙和毛细孔,改善混凝土孔结构和增大密实度的特性。

    在高性能混凝土中掺入粉煤灰,首先可从量上取代部分水泥,减少胶凝材料总量中水泥的用量,同时由于粉煤灰的二次反应取决于水泥水化产生的Ca(OH)2 的激发,水化速度远远低于水泥熟料,这种特性可以有效延缓拌和物的凝结速度和降低水化热。另外,掺入混凝土中的粉煤灰能有效地提高混凝土的和易性能,同时粉煤灰固有的形态效应也能有效改善水泥与外加剂的相容性。

    粉煤灰可改善混凝土的某些性能,如降低水化热、提高耐硫酸盐侵蚀能力、抑制碱-集料反应等等。但是,粉煤灰对混凝土的抗碳化性能和抗冻融能力却有不良影响。

2 水淬矿渣超细粉
    高炉矿渣是炼铁高炉排出的熔融矿渣迅速水淬冷却而成的。它疏松多孔,玻璃体含量在85 % 以上,玻璃体具有较高的自由焓,所以具有很高的反应活性。在水泥和石灰等激发剂作用下,具有很高的胶凝性。

    矿渣超细粉取代混凝土中的部分水泥后,可以降低混凝土单位用水量,提高混凝土的强度与耐久性。矿渣微粉作混凝土的掺和料,具有比粉煤灰更高的活性,而且品质及均匀性更易保证掺入混凝土中不仅可以节约水泥,降低胶凝材料水化热,而且可以改善混凝土的绝热温升,使混凝土的结构更密实,提高抗渗性及抗海水、酸及硫酸盐等的化学侵蚀能力,具有抑制碱—集料反应的效果等。
矿渣微粉的来源广,价格适中,替代水泥量大,后期强度较高。但其易磨性较差,用现有水泥厂球磨机生产高比表面积矿渣微粉有一定难度,因而价格较粉煤灰贵。掺磨细矿渣对提高混凝土早期强度的效果优于粉煤灰,细度越高,效果越佳,但成本也越高。

3 硅粉
    硅粉是电炉法生产硅铁合金所排放的烟道灰,SiO2含量大于90 %,平均粒径为0. 1~0. 2μm,比表面积高达2 000 cm2/ g,借助掺入高效减水剂和强力搅拌作用,可以填充水泥或其他掺和料的间隙,并且具有很高的活性,在各种掺和料中对混凝土的增强作用最为显著,是国际上制备超高强混凝土最通用的掺和料。但是,硅粉的水化作用快,不能降低混凝土水化热,需水量也稍大,且极易飞扬,给运输、拌和等操作带来不便,同时价格又偏高。出于经济方面的考虑,一般混凝土强度等级低于C80 时,都不考虑掺用硅粉。

4 粉煤灰和矿渣双掺
    优质粉煤灰和矿渣超细粉在混凝土中使用有各自的优缺点。相对而言,掺粉煤灰的混凝土早期性能比较差,混凝土的早期强度较低;而掺矿渣超细粉的混凝土早期强度较高,但矿渣超细粉的掺量较低时,起不到降低水化热和温升的作用,而且矿渣微粉的减水作用不如粉煤灰。若在混凝土中同时掺用粉煤灰和矿渣微粉,通过正交试验达到矿渣与粉煤灰的最优复合化,充分发挥各组分的超叠加效应,比单掺粉煤灰或单掺矿渣微粉具有更好的效果。

4. 1 复合增强机理
    混凝土中的水泥水化时产生相当数量的Ca(OH)2 晶体,由于Ca(OH)2具有可溶性,在硬化混凝土中Ca(OH)2的分布是极不均匀的,从骨料与胶结料之间的界面看,在界面过渡层的一定区域内Ca(OH)2富集及定向排列,与其他部分的水泥石相比,是一种多孔质的结构,强度很低。矿渣和粉煤灰复合超细粉混凝土中,矿渣和粉煤灰的潜在火山灰活性得以发挥,可与混凝土中Ca(OH)2  反应,生成对强度有贡献的水化硅酸钙凝胶(C-S-H) 。同时,形成致密的结构,使混凝土强度和抗渗性大幅度提高,从而使混凝土耐久性大大提高。

4. 2 改善水泥浆流变性能的作用机理
    超细粉混合双掺能改善水泥浆的流变性能,其作用机理主要是静电斥力作用、粒形效应和填充分散作用[4 ]:
(1) 静电斥力作用: 混合材吸附高效减水剂,形成双电层,在粒子之间产生分散斥力,混合材的表面电位高,产生的排斥力大,掺入水泥中有利于水泥的分散。
(2) 粒形效应: 混合材填充在水泥粒子之间,由于其表面光滑,降低了粒子之间的摩擦。
(3) 填充分散作用: 玻璃态材料填充于水泥粒子之间,使水泥颗粒的絮凝结构和颗粒扩散使内部结构降低黏度,同时原来絮凝结构中的水被释放出来,使浆液进一步稀化。另外,玻璃态混合材料填充于水泥颗粒之间,使浆液的体积增大,因而显著增加了润滑作用,改善了流变性。

    粉煤灰球形度很好,具有良好的形态效应。矿渣微粉球形度稍差于粉煤灰,但优于水泥颗粒,复合矿渣微粉替代部分水泥掺入混凝土中,除了其“形态效应”外,早期与水反应较慢,可减少这部分水化反应水,而且矿物微粉填充于水泥颗粒之间,亦减少了颗粒空隙用水,因而可提高拌和物的流动性。由于矿渣表面致密光滑,不容易吸附水分子,在浆体中容易产生光滑的滑动面,从而改善其流动性。但易引起泌水性增加,而粉煤灰则不易引起泌水,因而两种材料复合能使泌水、离析现象得到改善,是性能上的优势互补。

    当今,粉体工学迅速发展,已经能开发出比表面积11 000 cm2/ g(平均粒径3. 5μm) 、17 000 cm2/ g(平均粒径2. 0μm) 、11 000 cm2/ g(平均粒径1. 0μm) 左右的矿渣超细粉。因此,矿物超细粉的利用,应该是今后发展的一个方向[5 ] 。

5 对应用矿物超细粉的几点看法
(1) 掺加矿物掺和料并使用高效减水剂的配制方案,是目前不改变传统施工工艺的情况下配制高性能混凝土可行的路线。

(2) 活性矿物掺和料具有良好的火山灰活性,且资源丰富。利用工业废料作混凝土掺和料有利于环保,又能够节约水泥和能源,显著降低了混凝土的配制成本。

(3) 硅灰对提高混凝土的强度非常有效,且和易性较好,拌和物内部的剪应力非常小,但不足的是硅灰的成本较高,施工时粉末易飞扬;粉煤灰和矿渣粉的价格较低,可以较高比例地等量替代水泥并提高混凝土的早期强度,但其后期强度发展偏缓,因而用于中、高强度的混凝土较为适宜。

(4) 矿渣与粉煤灰复掺时,水泥用量可以降到200 kg/ m3 左右,这对于配制大体积混凝土以及炎热季节施工是非常有利的,但只能配制C45 以下的混凝土,对配制高强混凝土是不适宜的。从总体上讲,复掺方案在混凝土的耐久性上要优于单掺方案。

(5) 对于高性能混凝土,可以采用单掺硅灰、粉煤灰或矿渣微粉;对于大体积且有抗渗等要求的混凝土(其检验龄期一般超过28 d),可以单掺粉煤灰、矿渣微粉或复掺粉煤灰和矿渣微粉的方案;对于C40 左右的混凝土,可以采用复掺粉煤灰和矿渣微粉的方案,此时水泥用量可以降到200 kg/ m3 以下。

参考文献:
[1] 崔源声. 2002 年的中国水泥工业和未来展望[J ] . 新世纪水泥导报,2003,⑴:9.
[2] 王新友. 双掺磨细矿渣与高钙粉煤灰混凝土研究[J ] . 粉煤灰综合利用,1999,(2) .
[3] 王爱勤. 建筑混凝土[ M] . 化学工业出版社,2001.
[4] 丁庆军. 混合材对超细灌浆水泥流变性能的影响[J ] . 长江科学院院报,2002,(2) :253 .
[5] 冯乃谦,邢锋. 高性能混凝土[ M] . 北京:原子能出版
社,2001. 
 
原作者: 王海侠,方永浩,陈宇峰   
 
来 源: 南通大学学报(自然科学版)第4 卷第1 期

菱镁水泥制品的工艺问题  
  
时间:2007-12-28  来源:中国镁质材料网

   
    我国镁质材料资源十分丰富,其中菱镁矿的储藏量近30亿吨,氯化镁遍及沿海各盐矿。镁质胶凝材料的开发与应用在我国起始于二十世纪初(见相关链接:氯氧镁水泥又叫索瑞尔水泥和菱镁水泥)。“七五”期间,国家投入了上千万巨资,设立了《镁水泥物理化学基础及特性研究》重点科技攻关课题,并明确了制备性能稳定的氯氧镁材料的最佳条件和技术。我国制定12项标准,规范这种材料的生产,标准遍及建材、冶金、煤矿、市政、农业、铁路、消防等行业部门,并于2000年在合肥成立了“国家建材局镁质胶凝材料检测中心”,规范统一检测质量。氯氧镁胶凝材料虽然工艺不十分复杂,生产能耗小,产品具有节能、代木、节土、节水和生产成本低等特点,但是,由于对形成的硬化镁水泥石的相组分、相结构及其强度来源与强度的影响因素不十分清楚,特别是配料组分不科学、不合理,出现返卤、泛霜、变形现象,导致产品性能下降。    有关部门统计,目前我国镁质材料产品质量总体合格率大约只有60%左右。并分析国内当前镁质材料制品生产技术现状及所出现的缺陷,提出采取的技术措施。

     (一)返卤、泛霜的防治技术

    泛霜是镁质制品的重大质量缺陷,降低了产品强度与防水防湿性能。返卤和泛霜都会影响产品外观,污染环境。

     返卤原因及防治技术:

    1.把握动态科学的配比。

    常温气凝的镁质材料胶凝力学性能的主要相结构与相组分为:5Mg(0H)2·MgCl2·8H20。在生产中,MgO(氧化镁)的反应克分子比是多少,这是技术的核心。它的用量确定是通过MgO/MgCl2的不同克分子比的胶凝硬化体,分别测试不同龄期的强度及防水性能,确定最佳组分的物理力学性能,同时用X衍射及电子显微观察确定组分的相组成和最佳用量,作为MgO/MgCl2的克分子比用量应大于5,这是一个基本原则。

    作为确定配比用量的MgO应是活性MgCl2,即在常温下(10℃-35℃)和特定的时间内发生水化反应的氧化镁。作为刚出厂的MgO含量在80%一85%的轻烧镁粉,其活性氧化镁的含量大都是65-2%,若以轻烧粉中MgO含量作为配比的克分子计算依据必然导致MgCl2的用量过剩。

    在确定正确计算依据的情况下还应注意轻烧氧化镁中的活性氧化镁含量不是一成不变的,在储存过程中由于受潮或吸收空气中的水分形成水镁石’Mg(OH)2从而降低了活性.MgO的含量,这种情况在我国南方尤为突出。

     因此生产企业必须不定期地测定轻烧粉中的活性MgO含量、调整MgCl2的用量和配比组成,以动态科学的配比克服返卤、泛霜一现象。

    2.科学规范的成型、养护工艺。

    镁质材料的水化反应和硬化过程是需要时间的,部分生产者误把表面干固成型当成了水化反应完成,甚至为了缩短生产周期,不控制升温速度或加热养护都是不正确的。

     镁质材料的水化反应是一个需要时间的过程,通常表面干固脱模,仅是完成水化反应的17%左右。

     脱模后要注意保温、保湿养护,正确的做法是在成型温度10℃~35℃:下,体系反应温度不超过70℃,脱模后保持自身水化热和排湿的情况下养护3~5天,然后进行干空养护。切忌在脱模后进行干燥,否则未反应的MgCl2伴随水分的蒸发,迁移到制品的表面,水分蒸发后留下MgCl2造成返卤,泛霜,同时强度要损失10%~20%。在镁制材料制品的成型养护中还切忌采用高浓度卤液和加热方式。

    在生产过程中,不合理的工艺技术会导致氯氧镁制品返卤、泛霜。如:搅拌不均匀,正确的搅拌机应选择双轴且能白转与公转而且能变速,最高的搅拌速度能达到90~110r/min,若采用单轴搅拌机也应考虑设置倒顺开关和变速装置。生产中还切忌用MgCl2促凝液调整料浆稠度。因为这破坏了组成的克分子比关系,必然导致镁质材料中MgCl2过剩,如发生稠度变大的情况时,可用相当于料浆量2%~5%的1.5%的浓度的磷酸溶液加以调节。

    镁质材料制品表面有多种原因,需通过不同的技术手段加以遏制:

    NaCl霜,它的主要成分是NaCI和少量的KCl和MgCl2·6H2O,这主要是组分中上述杂质含量较高,特别是MgCl2·6H20中的含上述杂质较高,易于形成NaCl霜。限止NaCl的含量,自然可减少这种霜的形成。

    轻质填充料滑石粉、轻质碳酸钙的析出物形成的霜,这种现象多发生在镁质料浆中加入了上述物质。这需要在镁质材料料浆中尽量加入和轻烧粉比重(d=1.6g/cm3~1.9g/cm3)相当的填充料,减少料浆中的含水率。

     Mg(OH):和Ca(0H):霜的生成,是由于在轻烧粉原料中烧失量过大或MgO的克分子用量过大,造成MgO的水化,形成Mg(0H)2水镁石而表现出的白色形成物含量较大所造成的,控制轻烧粉原料的CaO含量或是选用合格稳定的轻烧粉原料,就可以制约这种霜的形成。

    MgCl2·6H2O霜的形成与镁水泥浆料的配比组成有直接关系,制约这种现象要从调整原材料配比,调整养护制度,掺加外加剂等方面入手。

    泡水处理法防止返卤、泛霜值得商榷。一般认为将硬化固结后的镁质材料制品浸泡在加入有漂白粉、碳酸钠和固色剂的水溶液中,浸泡处理24~48小时,能够提高镁质材料的强度。笔者认为,泡水破坏了镁质材料的水化过程,降低了材料的强度。特别是刚硬化脱模的镁质材料其强度的形成率仅为37.5%左右,MgCl2溶于水中更谈不上加强水化过程。同时,泡水增加了工艺的复杂性,增加了浸泡设施的费用和人力,浸泡水的排放增加了二次污染,泡水后增加了制品的干燥过程和干燥能耗,加剧了制品使用后的收缩率和导致开裂等现象。因此泡水不是理智之举。

    (二)合格稳定的原材料是确保镁质材料制品质量的重要保障

    1.轻烧MgO

    轻烧氧化镁粉是镁质材料的主要原料之一,它是由菱镁矿MgCO3在’750%~850~C下锻烧而来。一些生产厂家煅烧工艺较为落后,特别是对原料或烧成后的矿石无均化的措施,造成同一批产品,甚至同一袋产品的MgO含量和有效MgO含量都有较大的差距。

     还有部分生产者为片面追求生产成本,往往采用菱苦土替代轻烧粉生产镁质材料制品,这不可能生产高质量镁质材料制品。要保证MgO原料的合格与稳定性,生产合格的镁质材料制品,所采用轻烧MgO的原料,其MgO含量为80%一85%,活性MgO含量≮60±2%;Ca0含量<1.5%;烧失量为5%一9%;细度为≮170目。

     2.MgCl2

    MgCl2是镁质皎凝材料的两种主要原料之一,它的质量要求主要有两方面,一是MgCl2的有效含量,在JC/r449—2000标准中明确指出MgCl2≥43%,钙离子Ca+含量≤0.7%;另一方面是碱金属氯化物(以Cl—计)≤1.2%,因为Ca+与Cl—的含量将直接影响制品的稳定性与泛霜性。作为镁质材料制品富含Cl—对金属有腐蚀性,不能长期用金属增强。除采取有效措施使制品不产生残余MgCl2存在外,还可用MgSO4·H2O或MgSO4·7H2O替代部分的MgCl2·6H2O,用硅灰替代部分轻烧.MgO粉,其性能无异于镁质材料性能,但是材料费用较大,使其大面积推广尚有困难。

    3.其它材料

    主要是指增强材料玻璃纤维,虽然镁质材料硬化固结后介质PH值在7.2~7.6,但作为高碱性的玻璃纤维在遇水后纤维中的Na2O与K2O会形成NaOH,KOH等产物,与起骨架作用的SiO2发生反应,破坏了玻璃纤维的结构组成,不仅起不了加筋增强作用,还会引起玻纤表面缺陷和裂缝的扩展,也会导致玻璃纤维强度下降。因此要采用无碱玻璃纤维,玻纤的浸润剂应是无蜡的,以保证镁质胶凝材料的界面结合力。

    4.合理使用填充料

     填充料按其对氯氧镁胶凝材料的功能而言可分为活性与隋性,所谓活性如活性矿渣、活性煤渣、活化磷的工业废渣、活性硅灰等。它们的加入不仅能降低成本而且能有效地和Mg2+形成MgSiO3和3MgHPO3·3H20等抗水性强的结晶胶凝化合物,并改变氯氧镁复盐结接点,增强了晶体间的穿捅和粘附力,从而提高了材料的强度和抗水性。使用这一类材料应注意细度不可大于200目,材料应干燥,加量要适中。

    另一类为惰性填料,诸如石英粉、滑石粉、玻璃粉(中碱或无碱)、大理石等,这一类填料应是自身强度比较高,化学稳定性和体积稳定性好,在菱镁胶凝材料制品中起骨架作用,缓冲和减少了菱镁材料硬化所产生的体积膨胀,同时改变了制品的孔结构,增加了制品的密实性,对提高制品的强度和减少变形大有裨益。对填料的使用应注意以下问题:一是填料的化学组成以不合碳酸盐成分为好,如方解石粉、石灰石粉和轻钙等。因为碳酸盐会发生化学反应放出二氧化碳气体,使制品产生气孔,减弱抗渗性和相应的强度。二是外加的填料要确保细度不得大于1 80目,且应该干燥,保证能与氯氧镁胶凝材料充分地进行界面结合。惰性填料的加入量,可相对于轻烧氧化镁重量的l:1—1:0.1。至于木质材料的填充料,诸如植物秸秆、锯屑等应注意材料的含泥量应<1%,细度在20—60目,含水率应<25%,材料不应霉烂变质即可。

     (三)改性外加剂的正确使用

    外加剂是稳定5·1·8相的重要第三组分,参与方式一种是填充到5·1·8晶格的空穴中,另一种是取代了5·1·8晶格中的某种组分,但并不影响5·1·8相的整个化学结构,特别是加入含活性SiO2的混合材,掺入磷酸盐、酸性磷酸盐及磷酸、B203、、硅酸,掺入含硫化物和活化硫的工业废渣等。

    有的水溶性有机聚合物乳胶类外加剂,诸如:丙烯酸乳胶、EVA乳胶、氯偏乳胶、uF树脂等。它们的加入除了自聚合提高镁质制品的强度外,还具有堵塞毛细通道作用,提高抗水性能。作为掺入的外加剂应该具备两个条件:一是能使结晶改性形成难溶于水的相结晶点,同时能使未组成结晶相的镁形成难溶于水的化合物;二是自身具有一定的胶凝性能,能粘聚在结晶相的界面,提高抗水浸蚀能力,或者自身具有抗水功能,堵塞于毛细通道上;改善抗水性能。上述的水溶性聚合物和铁盐(硫酸亚铁),铝盐(硫酸铝、A1203等),锌盐(硫酸锌)等就属这种类型。

    (四)防止氯氧镁制品的变形与防裂

    氯氧镁制品的变形表现的形式有收缩变形;厚度与密度偏差及结构不对称所造成的翘曲变形,变形影响建筑功能和使用效果。

    过多过大的用水量,会导致这一问题的出现。一般在混合料浆中液/固比值在0.43—0.47左右,根据活性MgO的含量所确定MgCL2的用量。在此条件下,水的用量能使MgCl2的浓度保持在20%一23%时的用水量即是正确的用水量。应强调的是生产企业应设置干燥设备,使制品的含水率在出厂前控制在8%~10%,避免制品在使用过程中因排湿的不一致造成变形。在实际生产中对于组分中的轻质、松软的填充料应尽可能的少加或者不加。这类填充料对抵制材料的收缩不力,同时本身的吸湿性也大,加剧了材料的收缩,同时在组分中也应注意纤维的加筋量是否足以提高抗击力和防裂要求。

    制品的厚度、密度公差大和结构不对称所造成的变形现象,多发生于手工成型,增强的玻璃纤维网格布分布不均匀也会引起制品变形。还应注意作为填充的集料比重应尽可能和轻烧氧化镁粉相一致,避免集料的比重不同造成在成型过程中产生沉积或上浮于混合集料,造成容重差异大。板材内部的收缩、膨胀不一致,产生结构应力会引起翘曲变形,克服厚度公差、容重公差和注重结构的对称性是防止变形的关键举措。

    合理的施工技术与嵌缝材料的应用是防裂的重要举措。没有收缩的无机胶凝材料是不存在的。能做到的是把收缩限制到最小的范围内,再配合合理的施工技术与嵌缝材料的应用。笔者仅就硅镁隔墙条板在墙体施工中有关事项叙述如下:

     硅镁墙材使用的板材含水率,应控制在当地的空气最低平衡含水率。通常为9:t-,4%需嵌缝和与框架及地面接角的板材二端面、二侧面必须将脱模剂除去,更新其表面以增加和嵌缝材料的粘接力。使用的板材养护龄期不得低于28天。墙板安装完毕后,停滞5~7天,以调节板材和施工环境的含水率,平衡及安装后的位移平衡。

    墙板与楼地面接触空距采用半干硬性混凝土填充撬实。其组成为是32.5号硅酸盐水泥中粗砂:膨胀剂:水=l:2.5~3.0:0.1:0.2~0.3(重量份)

    嵌缝胶泥采用聚合物纤维水泥砂浆。其组成为,32.5号普硅水泥:中粗砂:维纶纤维:水溶性聚合物:水(重量份)=1:2.5:6/1000:0.05~0.1:0.38~0.45(维纶纤维长度6~12mm)。也可用同质的氯氧镁胶凝料,加入上述同量的维纶纤维与水溶性聚合物,水溶性聚合物可选用丙烯酸乳胶、EVA乳胶、偏氯乙烯乳液和聚醋酸乙烯乳胶。

    嵌缝施工分两次进行,板材的侧缝应扩大为宽×深=lcm×0.5cm。第一次嵌缝深度为2/3,凝固后再嵌1/3,并在表面用聚酯布或维纶布加以粘贴,即所谓的防裂带处理。

     (五)氯氧镁胶凝材料制品标准与规范完善商榷

    关于氯氧镁的原材料和制品的相关标准针对不同用途和要求,各有侧重,但对于一些材质共性的问题却未有统一标准,根据国外和一些地区的相关标准提出如下建议:

    1.氯氧镁胶凝材料制品的返卤、泛霜是质量缺陷的表现形式之一,凡以氯氧镁为原料,无论何种产品都必须做抗返卤性和泛霜性检验。这一问题应在我国现行标准中统一提出。JC688标准指出,抗返卤性在相对湿度i>90%,温度30~C~40~C的恒温恒湿箱观察12小时,观察有无水珠或变潮。12小时的时间偏短,建议改为72小时。泛霜性检验.ICT568标准笔者认为可行。

    2.建议增设水溶出物含量和水溶出物Cl一含量的测定,其含量不超过镁质材料的0.3%,溶出物含量≤6%。

     3.建议增设软化系数的测定,以衡量产品的抗水性。同时应测定冻融以判断做装饰构件的可否。建议软化系数应I>0.8,冻融次数不低于25次。

    4.应明确产品的出厂含水率为9士4%。

    5.产品的抗弯强度,特别是板材,应和产品的密度,板材厚度相关。不能笼统的定位一等品与合格品的抗弯强度值。

    6.应明确产品的收缩率与湿胀率和吸湿下垂度等的指标,提供产品的可利用价值。

    7。应统一产品检测的成型养护龄期的时间。笔者认为养护龄期28.天为宜。    .

    8.吸水率项目检验和吸水率指标不统一,建议此项必须设定,吸水率值应≤13%为宜

    总之,制作与生产优质、稳定的氯氧镁胶凝材料制品是一个多因素的系统工程。不能用粗放简单的方式对待氯氧镁胶凝材料的生产与应用,也不应因某些不按科学规范生产的氯氧镁胶凝材料制品所造成的质量缺陷,而否定这种材料的存在价值。
 
 


 

热 线:13691139438 13001204486 网名: 域名:xlc.cn 联系昕龙春 主业经历 (1963-2017

通 讯:北京市海淀区中关村南大街34号1楼(中关村科技发展大厦院东) 100081 联系人: 马女士

在 线:QQ:651130414 E:xlc786@126.com 自然循环生命品质与品牌创意网络工作室(版权所有)

关联总部:北京市海淀区三里河路11号(住房和城乡建设部北配楼) 北京丰台西四环南路52号

北京西城区德外大街36号A楼(中国建设科技集团) 北京丰台区洋桥70号(东北角国际培训楼)

北京市海淀区三里河路15号(中建大厦) 北京市海淀区中关村南大街12号(中国农业科学院内)

北京市朝阳区小黄庄路9号院(中国建筑科研院南院白楼) 北京市海淀区恒润国际大厦1807室

北京市朝阳区北三环东路15号(化工大学院内) 北京市西城区三里河北街甲1号(原建工七建)

北京市海淀百万庄大院中国对外承包工程商会建筑分会 北京市西城区复兴门内大街45号院内

西城区月坛北街25号院临街楼 西城右安门内大街75号(中国施工企业管理协会滑模工程分会)

各地部分连接: 昕龙春的BLOG  江苏昕龙春   天津昕龙春     昕龙春阿里巴巴

自然循环生命品质绿色消费精品专家网 www.xlc.cn 一级站第一次上线时间:2004年11月19日