※ 特别推荐 ※
   2015年2月19日中国农历...
   昕龙春XLC最新绿色链接推荐
   同心圆梦·美丽中国行全国民族...
   荒漠化治理技术研讨会在京召开...
   让社会责任体现于地球村公民的...
   厂商曝铜制水龙头使用废品回炉...
   10年努力实推昕龙N-LON...
   2013昕龙春助推昕龙品牌坚...
   季元振老师著作《建筑是什么?...
   叶甘霖:"站立小便导流器"让...
   洋快餐大举进军中国的真相 素...
   热线电话0106013432...

※ 友情连接 ※
更多友情连接>>


微波处理对活性炭孔隙结构的影响--昕龙春XLC


 

    昕龙春XLC推荐世界领先发明专利设备(有实用式样机)---等离子体放电催化空气净化器(机)adlist.asp?newsid=1

微波处理对活性炭孔隙结构的影响
www.xlc.cn 昕龙春XLC 2007.08.02  来源: 网摘

作者:蒋文举  江霞   朱晓帆   金燕

    摘要:高纯氮气的保护下对活性炭在4种不同功率和作用时间下进行了微波改性处理,利用ASAP2010氮气吸附仪和X-射线分析仪测定了活性炭经微波处理后孔隙结构和基本微晶的变化,通过对比分析探讨了微波加热对活性炭孔隙结构的影响。结果表明:微波处理使活性炭比表面积变化不大,孔容稍有缩小,主要变化发生在中孔范围,孔径分布变化不大,只是向小孔方向发生稍微的移动,活性炭基本微晶增大,石墨化程度提高。


    活性炭作为一种吸附催化材料,已在化工、石油、轻工、食品、环保、国防等诸多领域得到广泛应用,它的性能是由其孔隙结构和表面化学性质两方面决定。大部分关于活性炭气相吸附的研究表明,活性炭的孔形态(表面积和孔径分布)是影响其吸附性能的主要参考因素,其表面化学特性影响不显著,而对活性炭的液相吸附或活性炭作为催化剂载体,炭表面的化学特性对吸附性能产生显著影响。在吸附(分离)操作中,吸附剂的孔径与吸附质分子或离子的几何大小有一个匹配问题。只有吸附质分子或离子能进入和充填的孔隙才是有效孔隙,据资料报道:对吸附剂利用率最高的孔径和吸附质分子直径的比值为1.7~3.0,对需要重复再生的吸附剂这一比值为3~6或更高。


    为了适应各种功能的要求,活性炭需要有适当尺寸的大孔、中孔和微孔,孔隙调整的目的是使活性炭的细孔与吸附分子尺寸相当,提高其对不同吸附质的吸附能力。孔隙调整的方法取决于活性炭的孔结构,如孔径的大小、孔容的大小等,有的需要开孔,扩孔,有的则需要缩孔。开孔和扩孔常用的方法是控制活化程度,缩孔的方法很多,有热收缩法、浸渍覆盖法、气相热解堵孔法等。刘军利等研究了隔氧条件经高温处理后淀粉质活性炭孔隙结构的变化,但对微波加热处理后活性炭孔隙结构的变化却鲜有报道,作者初步研究了微波处理前后活性炭孔隙结构、基本微晶的变化,对活性炭的改性有重要参考价值。
    结果及讨论
1.水微波处理对活性炭比表面积的影响
    通过对活性炭在微波改性前后比表面积的测定,原炭AC-0的比表面积671.3㎡/g,而微波改性后的样品MAC-1、MAC-2、MAC-3、MAC-4的比表在积分别为665.73、683.86、684.3和660.8㎡/g,比表面积的变化率为-1.56%~1.93%。显然,微波作用对活性炭的比表面积影响甚微,基本上变化不大。
2. 微波处理对活性炭孔隙结构的影响
    选择AC-0、MAC-1和MAC-2样品进行了表面孔隙结构情况比较,结果看出,在微波辐照功率不强时,升温到286℃时,比表面和总孔容积略下降。随着微波功率增加,温度升到589℃时,比表面积和总孔容积也有增加。从中还可以看出:微波处理使孔容变化主要发生在中孔,微孔容积基本不变,平均孔直径由1.95nm降至1.93nm。比表面积基本不变,这是由于对比表面积的影响主要取决于微孔。
    从实验中可以很清楚地看出:总孔容积减少主要发生在2~10nm的孔直径范围内,占总孔容积减少的60%左右,微孔容积减少只占总孔容积减少的20%左右。
    微波对活性炭进行改性处理,表现为活性炭温度急剧上升,这种高温热处理可以引起炭骨架的收缩,从而导致孔结构的变化,使其微孔及中孔的孔容有所降低,但由于热处理产生的炭骨架的收缩对各个孔径的微孔和中孔的影响是一致的,不同孔径的孔都发生收缩,从而使孔容下降,孔径分布向小孔方向稍有移动。
    对于不同微波功率和处理时间来看,由于高温处理对中孔和微孔的影响是一致的,故主要是导致了它们的孔容和比表面积的不同差异,而各自的孔径分布都变化不大,只是向小孔方向有稍微的移动。
3. 微波处理对活性炭基本微晶的影响
    活性炭的微晶结构尺寸d002和Lc的大小可以判断炭的石墨化结构的发育程度。根据实验得到的微波改性活性炭的X-射线图谱可以看出,微波改性活性炭样品与原炭相比,其(002)峰更窄、更锐。根据图谱中衍射角与衍射强度的关系,利用分峰技术可以确定各峰的位置和形状,据此可以计算出微晶厚度Lc002、微晶宽度La和微晶面间距d002。
由计算结果可知,微波功率越大,作用时间越长,晶体化程度提高,基本微晶增大,石墨化程度提高,这些因素导致微波热处理后活性炭的缺陷减少。
对于活性炭在微波处理前后孔隙结构、基本微晶的变化,可以解释为:微波热处理使活性炭基本微晶发生不同程度的热膨胀,造成孔隙塌陷,孔容积减少;石墨基本微晶层与层之间的间距d002减小,La增大,微晶长度Lc增大,无序化程度减弱,有序化程度提高,这就意味着热处理后活性炭石墨化程度提高。
结论
    微波处理使活性炭比表面积变化不大,孔容稍有缩小,主要变化发生在中孔范围,孔径分布变化不大,只是向小孔方向发生稍微的移动,活性炭基本微晶增大,石墨化程度提高。

 

微波改性活性炭脱硫剂的研究 


2004-06-06 作者:江霞 蒋文举 朱晓帆 金燕   上海环境科学

    摘要 将活性炭浸渍金属盐后再进行微波加热,以开发一种价廉且性能较好的活性炭脱硫剂。应用正交实验法研究了浸渍剂种类、浸渍剂组成、微波功率、辐照时间4种因素对改性活性炭脱硫效果的影响。结果表明,浸渍剂种类和微波功率是决定改性活性炭硫容量的关键因素。最优的改性活性炭脱硫剂是在微波功率为680W、辐照时间为2min时,担载5%的Cu(NO3)2浸渍剂改性的活性炭,此改性活性炭硫容量可达120.9mg/g以上。

    关键词:浸渍活性炭 改性 脱硫 微波加热

1 前言
  燃煤烟气中的SO2是大气中的主要污染物,如何高效、低成本地降低其排放一直是环保领域研究的重点。普通活性炭脱硫剂虽已有几十年的应用历史,但单纯活性炭的吸附氧化活性并不高。为了开发一种价廉且性能较好的活性炭脱硫剂,国内外学者研制了数种改性活性炭[1~3]。Bhacca [4]认为改性后的活性炭不再完全是物理吸附,而是产生一种介于物理吸附和化学吸附之间的电性吸附,因此提高了活性炭的吸附性能。
目前,研究最多的一类是将活性炭在金属盐溶液中浸渍后烘干,改变金属存在形态,负载金属原子或金属氧化物,增加或改变活性炭的活性位,使SO2在改性后的活性炭表面上氧化为SO3,从而提高对SO2的吸附容量[5]。还有一类是将活性炭材料在惰性气体中高温热处理,赋予活性炭以某种特性,增强其脱硫活性[6]。因为活性炭能有效地吸收微波能量,使温度达到1000℃以上,所以本实验在浸渍活性炭的基础上,将浸渍金属化合物后的活性炭再进行微波加热,以期获得更好的脱硫效果。本文应用正交实验法研究了在不同改性条件下,改性活性炭的脱硫性能。

2 实验部分
2.1 改性活性炭的制备
  本实验所用活性炭为重庆市北碚化学试剂厂生产的HG3-1290-80型颗粒状媒质活性炭。将此活性炭粉碎至20~40目,经过预处理后,分别等体积地浸渍在不同浓度的Na2CO3、MnSO4、Cu(NO3)2溶液中,并振荡约2h,然后在100~110℃下烘10~12h。取10g浸渍活性炭装入石英玻璃反应器中,然后将反应器放入由四川大学无线电系改装的MCL-2型微波发生器中,在高纯N2的保护下热处理,控制微波功率,一定时间后,在N2中冷却至100℃以下,保存备用。
2.2 SO2吸附性能的评价
SO2吸附实验在固定床玻璃反应器中进行,实验流程如图1所示。反应器的内径为8mm,用超级恒温水槽恒温,SO2进出口的浓度采用碘量法检测。实验中所有的样品都在同一条件下考察,即样品用量均为1.00g,装填高度约为28mm, SO2浓度为0.348%,其余为N2,气体流量为0.2L/min,反应温度为30℃,样品粒径为20-40目。SO2在活性炭上的吸附量由活性炭吸附SO2气体前后的增加质量计算得到。
实验考察了不同的浸渍剂、浸渍剂相对于活性炭的含量、微波功率、辐照时间4种主要因素对改性活性炭脱硫剂硫容量的影响。各因素水平如表1所示。

表1 正交实验考察的因素及水平
序 号 浸渍剂种类 浸渍剂含量(%) 微波功率(W) 辐照时间(min)
1 Na2CO3 5 170 1
2 MnSO4 10 425 2
3 Cu(NO3) 15 680 3

3 实验结果和讨论
3.1 极差分析
实验结果以脱硫剂的穿透率为0.6时的硫容量,即单位质量脱硫剂脱除的SO2质量作为评价脱硫剂优劣的指标。用L9(34)正交实验表安排实验,实验结果如表2所示。

表2 正交实验结果
试验号浸渍剂种类浸渍剂含量%微波功率W辐照时间(min)硫容量
1 1 1 1 1 48.14
2 1 2 2 2 60.37
3 1 3 3 3 58.42
4 2 1 2 3 57.88
5 2 2 3 1 68.03
6 2 3 1 2 53.86
7 3 1 3 2 105.45
8 3 2 1 3 81.05
9 3 3 2 1 79.2

对以样品的硫吸附量为评价指标的正交实验作极差分析,如表3所示。可以看出,经过改性后的活性炭对硫的吸附量大大提高了,浸渍剂种类和微波功率是决定改性活性炭吸附脱硫性能的关键因素,而几种浸渍剂含量和辐照时间对硫容量的影响不是很显著。从本实验的结果来看,最优改性条件是:浸渍剂为Cu(NO3)2,微波功率为680W,辐照时间为2min,浸渍剂含量为5%。此改性活性炭具有最高的硫吸附量,为120.9mg/g,与未改性活性炭的硫吸附量31.9mg/g相比,增加了约3.8倍。

表3 穿透率为0.6时硫容量的极差分析
序号 浸渍剂种类 浸渍剂含量(%)微波功率(W)辐照时间(min)
1 55.64 70.49 61.02 65.12
2 59.92 69.82 65.82 73.23
3 88.57 63.83 77.30 65.78
极差 32.92 6.66 16.28 8.10

3.2浸渍剂的影响
  从表2可以看出,以Na2CO3和MnSO4作浸渍剂的改性活性炭对硫的吸附性能虽然比起原样来均有提高,但效果不是很好;而以Cu(NO3)2作浸渍剂的改性活性炭却有很好的硫吸附性能。图2为不同改性脱硫剂分别在有氧和无氧条件下的硫吸附量的比较。从图上可以看出,Cu(NO3)2不管是在无氧还是在有氧的环境下,其效果都较好,说明以此物质浸渍改性的活性炭具有良好的吸附性能和催化性能。这是由于用Cu(NO3)2作浸渍剂改性的活性炭表面结构含氮量增多,相应氨基、亚氨基等含氮官能团增多有利于对SO2的吸附[6],使其在一定时间内吸附SO2的总量大于原样。另一方面,由于改性活性炭表面随浸渍引入了Cu(NO3)2, 更增加了活性组分CuO, CuO的存在同样对SO2的吸附更为有利。而尽管MnSO4浸渍改性的活性炭在无氧条件下的硫吸附量比Na2CO3和Cu(NO3)2浸渍炭的都低,然而在有氧条件下却和Na2CO3和Cu(NO3)2浸渍炭的脱硫性能相差不多,这说明MnSO4浸渍炭具有较好的催化性能。有氧气存在时,改性活性炭的脱硫活性大大高于无氧时,说明SO2在脱硫剂上的吸附有氧的参与,可能发生如下催化氧化反应:2SO2+O2+2MO→2MS O4 (M为某一金属)。
3.3 浸渍剂组成的影响
  改性活性炭脱硫剂中的活性组分金属氧化物的担载量是影响其脱硫活性的因素之一。为寻求高活性脱硫剂适应的载铜量,在30℃下分别对载铜量为0%、5%、10%、15%的脱硫活性进行评价,结果见图3。可以看出,反应一开始,未改性活性炭在出口处就可检测到较高浓度的SO2,其出口浓度随时间的延长迅速增加;而改性活性炭表现出相对高的脱硫性能,且载铜量在0%~5%之间,脱硫活性随载铜量的增加明显提高;当载铜量为10~15%时,改性活性炭的脱硫性能反而下降了。此现象可能的原因是[7]: 载铜量为5%时,CuO基本上分布在与气相SO2容易接触的活性炭表面,制约扩散过程进行的微孔内分布的CuO较少;当载铜量介于10%~15%之间,分布在易接触表面CuO的量基本相同,但微孔内的CuO随载铜量的提高而增加,微孔堵塞趋于明显,有效吸附表面减少,脱硫性能下降。另一方面,铜担载量低于5%,活性组分CuO在活性炭表面高度分散,无体相CuO出现,但脱硫剂过低的活性组分含量,使得脱硫活性较低;高于5%时,CuO在活性炭表面发生多层覆盖,且随着载铜量的继续增加,活性组分聚集和内部微孔堵塞严重,致使脱硫活性出现明显下降。
3.4 微波功率的影响
  图4表示微波功率对浸渍改性活性炭脱硫效率的影响(以 Na2CO3浸渍炭为例)。从图中可以看出,随着微波功率的增大,硫吸附量增加;但是增加到一定程度,微波功率再增大,硫吸附量趋于平稳,且有下降趋势。这是因为在活性炭的孔隙中吸附着有机物和残留炭等微量物质,这些物质大部分集中在微孔中,在微波加热的作用下,它们克服范德华力吸引开始脱附。随着微波能量的聚集,在致热和非致热效应的共同作用下有机物一部分燃烧分解,放出CO2和CO气体,留下许多活性中心可增强活性炭对SO2的吸附性能。但是,活性炭自身微波能量聚集过多会促使原有孔隙边上的碳被烧毁、微孔减少、中孔和大孔增加,使它的脱硫性能降低。

3.5 辐照时间的影响
图5 表示微波辐照时间对改性活性炭脱硫性能的影响[以Cu(NO3)2浸渍炭为例]。从图中可以看出,在1~2min之间,随着微波辐照时间的延长,脱硫效果越好;但是当到2min以后,时间再延长,硫容量反而有所下降。这可能是因为在微波加热处理开始阶段,使活性炭孔隙内的无序碳、焦油产物在孔隙表面的热解产物被消除。这样一方面打开了闭塞的孔隙,另一方面从基本微晶的石墨中除去部分碳,产生新的微孔。微孔增加,表面上未饱和的碳原子增多,由于高度重叠的吸附势与氧等原子的化学吸附,使得一些位置势能增加,形成的吸附转化活性位就越多。而微波热处理时间过长、温度过高,具有各向异性的活性炭基本微晶发生不同程度的热膨胀,造成孔隙塌陷、孔容减小,因而它的硫吸附性能也降低。
4 结语
4.1本实验所制得的改性活性炭脱硫剂,比未改性活性炭的硫吸附量显著增加,浸渍剂种类和微波功率是决定改性活性炭硫容量的关键因素。最优的改性活性炭脱硫剂是在微波功率为680W、辐照时间为2min下,担载5%的Cu(NO3)2的改性活性炭,此改性活性炭硫容量可达120.9mg/g以上。
4.2采用浸渍金属化合物再微波加热处理后的改性活性炭,脱硫性能大大提高了。原因可能为,微波加热将金属盐分解为金属氧化物,在吸附反应中,金属氧化物将SO2氧化为SO3,而其本身则还原为金属单质,金属单质又可在活性炭上氧化变回金属氧化物,从而完成催化循环,构成具有更高活性的改性活性炭吸附催化剂,反应如下:SO2+MO=SO3+M(M为某种金属)。而微波加热将活性炭许多闭塞的微孔打开也是其中的一个主要原因。
4.3活性炭脱硫剂金属盐的担载量以5%~10%为宜,经过微波加热处理后,既能保证金属物质在活性炭上有较高的分散性,又不至因过量金属盐介入而使活性炭微孔发生严重堵塞。

5参考文献
1 Kaneko K.J Chem Soc Faraday Trans,1992,88(9):1305~1309.
2 Przepiorski J, Oya A. K2CO3-Loaded deodorizing activated carbon fiber against H2S gas: Factors of influencing the deodorizing efficiency and the regeneration method. Journal of Materials Science Letters, 1998, (17);679~682.
3 Vissanu Meeyoo, David L, Trimm. Adsorption-reaction processes for the removal of hydrogen sulphide from Gas Streams. J Chem Tech Biotechnol, 1997,120(68):411~416.
4 Bhacca N S, Chemical Shift Induced by Bezene in Steroidal Retone and Acetata. Tetrahedron Lett,1960,41:3124.
5 Klinik J, Grzybek T. The Influence of the Addition of Cobalt, Nickel, Manganese and Vanadium to Active Carbon on Their Efficiently in SO2 Removal from Stack Gases. Fuel, 1992,71(11):1303.
6 Daley M A, Mangun L, DaBarr J A, et al., Adsorption of SO2 onto Oxidized and Heat-treated Activated Carbon Fibers(ACFs). Carbon, 1997,35(3):411.
7 刘中正,串亚权,罗德明,等. 改性PAN基活性炭纤维的SO2吸附性能. 环境科学,1994,15(5):1~5.
8 刘守军,刘振宇,牛宏贤,等. 铜物种分散性对Cu/AC脱硫剂低温反应性的影响. 煤炭转化, 2000,23(4):63~68 .
第一作者江霞,女,1978年7月出生。2003年毕业于四川大学建筑与环境学院,硕士。



 

热 线:13691139438 13001204486 网名: 域名:xlc.cn 联系昕龙春 主业经历 (1963-2017

通 讯:北京市海淀区中关村南大街34号1楼(中关村科技发展大厦院东) 100081 联系人: 马女士

在 线:QQ:651130414 E:xlc786@126.com 自然循环生命品质与品牌创意网络工作室(版权所有)

关联总部:北京市海淀区三里河路11号(住房和城乡建设部北配楼) 北京丰台西四环南路52号

北京西城区德外大街36号A楼(中国建设科技集团) 北京丰台区洋桥70号(东北角国际培训楼)

北京市海淀区三里河路15号(中建大厦) 北京市海淀区中关村南大街12号(中国农业科学院内)

北京市朝阳区小黄庄路9号院(中国建筑科研院南院白楼) 北京市海淀区恒润国际大厦1807室

北京市朝阳区北三环东路15号(化工大学院内) 北京市西城区三里河北街甲1号(原建工七建)

北京市海淀百万庄大院中国对外承包工程商会建筑分会 北京市西城区复兴门内大街45号院内

西城区月坛北街25号院临街楼 西城右安门内大街75号(中国施工企业管理协会滑模工程分会)

各地部分连接: 昕龙春的BLOG  江苏昕龙春   天津昕龙春     昕龙春阿里巴巴

自然循环生命品质绿色消费精品专家网 www.xlc.cn 一级站第一次上线时间:2004年11月19日